Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Maslej, Nestor; Fattorini, Loredana; Perrault, Raymond; Gil, Yolanda; Parli, Vanessa; Kariuki, Njenga; Capstick, Emily; Reuel, Anka; Brynjolfsson, Erik; Etchemendy, John (Ed.)AI has entered the public consciousness through generative AI’s impact on work—enhancing efficiency and automating tasks—but it has also driven innovation in education and personalized learning. Still, while AI promises benefits, it also poses risks—from hallucinating false outputs to reinforcing biases and diminishing critical thinking. With the AI education market expected to grow substantially, ethical concerns about the technology’s misuse—AI tools have already falsely accused marginalized students of cheating—are mounting, highlighting the need for responsible creation and deployment. Addressing these challenges requires both technical literacy and critical engagement with AI’s societal impact. Expanding AI expertise must begin in K–12 and higher education in order to ensure that students are prepared to be responsible users and developers. AI education cannot exist in isolation—it must align with broader computer science (CS) education efforts. This chapter examines the global state of AI and CS education, access disparities, and policies shaping AI’s role in learning. This chapter was a collaboration prepared by the Kapor Foundation, CSTA, PIT-UN and the AI Index. The Kapor Foundation works at the intersection of racial equity and technology to build equitable and inclusive computing education pathways, advance tech policies that mitigate harms and promote equitable opportunity, and deploy capital to support responsible, ethical, and equitable tech solutions. The CSTA is a global membership organization that unites, supports, and empowers educators to enhance the quality, accessibility, and inclusivity of computer science education. The Public Interest Technology University Network (PIT-UN) fosters collaboration between universities and colleges to build the PIT field and nurture a new generation of civic-minded technologists.more » « lessFree, publicly-accessible full text available April 14, 2026
-
Abstract Following a nuclear war, destruction would extend well beyond the blast zones due to the onset of a nuclear winter that can devastate the biosphere, including agriculture. Understanding the damage magnitude and preparing for the folly of its occurrence are critical given current geopolitical tensions. We developed and applied a framework to simulate global crop production under a nuclear winter using the Cycles agroecosystem model, incorporating ultraviolet (UV)-B radiation effects on plant growth and adaptive selection of crop maturity types (shorter cycle the lower the temperature). Using maize (Zea maizeL.) as a sentinel crop, we found that annual maize production could decline from 7% after a small-scale regional nuclear war with 5 Tg soot injection, to 80% after a global nuclear war with 150 Tg soot injection, with recovery taking from 7 to 12 years. UV-B damage would peak 6–8 years post-war and can further decrease annual maize production by 7%. Over the recovery period, adaptive selection of maize maturity types to track changing temperatures could increase production by 10% compared to a no-adaptation strategy. Seed availability may become a critical adaptation bottleneck; this and prior studies might underestimate food production declines. We propose that adaptation must include the development of Agricultural Resilience Kits consisting of region- and climate-specific seed and technology packages designed to buffer against uncertainty while supply chains recover. These kits would be congenial with the transient conditions during the recovery period, and would also be applicable to other catastrophes affecting food production.more » « lessFree, publicly-accessible full text available May 13, 2026
-
Lighting, as a significant component of indoor environment quality, was found to be a primary contributor to deficient indoor environments in today’s workplace. This resulted from the fact that current guidelines are derived from empirical values and neglect the prevalence of computer-based tasks in current offices. A personal visual comfort model was designed to predict the degree of an individual’s visual comfort, as a way of evaluating the indoor lighting of the environment. Development of the model relied on experimental data, including individual eye pupil sizes, visual sensations, and visual satisfaction in response to various illuminance levels used for tests of six human subjects. The results showed that (1) A personal comfort model was needed, (2) the personal comfort model produced a median accuracy of 0.7086 for visual sensation and 0.65467 for visual satisfaction for all subjects; (3) To develop a prediction model for the sample group, the Support Vector Machine algorithm,, outperformed the Logistic Regression and the Gaussian Naïve Bayes in terms of prediction accuracy. It was concluded that, a personal visual comfort model can use a building’s occupant’s eye pupil size to generate an accurate prediction of that occupant’s visual sensations and visual satisfaction that can, therefore, be applied with lighting control to improve the indoor environment and energy use in that building.more » « less
-
Abstract We present a Python package geared toward the intuitive analysis and visualization of paleoclimate timeseries,Pyleoclim. The code is open‐source, object‐oriented, and built upon the standard scientific Python stack, allowing users to take advantage of a large collection of existing and emerging techniques. We describe the code's philosophy, structure, and base functionalities and apply it to three paleoclimate problems: (a) orbital‐scale climate variability in a deep‐sea core, illustrating spectral, wavelet, and coherency analysis in the presence of age uncertainties; (b) correlating a high‐resolution speleothem to a climate field, illustrating correlation analysis in the presence of various statistical pitfalls (including age uncertainties); (c) model‐data confrontations in the frequency domain, illustrating the characterization of scaling behavior. We show how the package may be used for transparent and reproducible analysis of paleoclimate and paleoceanographic datasets, supporting Findable, Accessible, Interoperable, and Reusable software and an open science ethos. The package is supported by an extensive documentation and a growing library of tutorials shared publicly as videos and cloud‐executable Jupyter notebooks, to encourage adoption by new users.more » « less
An official website of the United States government
